CHEMSTRE
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2013

Total Synthesis of Nominal Gobienine A

Azusa Kondoh, Alexander Arlt, Barbara Gabor, and Alois Fürstner*[a]
chem_201300827_sm_miscellaneous_information.pdf

Table S1. Comparison of the ${ }^{1}$ H NMR signals of the butanolide ring of the gobienine A aglycone with those of the all-cis configured paraconic acid derivatives prepared during our synthetic study and literature data.

Compound	Solvent	H2	H3	H4	Ref
Gobienine A aglycone	[a]	2.88 dq (7.5, 7.0)	3.24 dd (8.0, 7.0)	4.57 ddd (8.0, 8.0, 5.0)	1

$\begin{array}{llll}\text { [a] } & 3.04 \text { quint }(7.0) & 3.49 \mathrm{dd}(6.9,5.1) & 4.47 \mathrm{td}(7.0,5.2) \\ \mathrm{CDCl}_{3} & 2.96 \text { quint }(\approx 7)^{\mathrm{b}} & 3.37 \mathrm{dd}(\approx 7, \approx 5)^{\mathrm{b}} & 4.45 \mathrm{td}(\approx 9, \approx 5)^{\mathrm{b}}\end{array}$

$\mathrm{CDCl}_{3} \quad 2.84$ quint. (7.2) $\quad 3.20$ dd $(7.5,5.1) \quad 4.30$ ddd $(9.4,5.2,4.2)$

$\mathrm{CDCl}_{3} \quad 2.87 \mathrm{dq}(7.4,7.1) \quad 3.29 \mathrm{dd}(7.6,5.2) \quad 4.38 \mathrm{dt}(8.6,5.1)$

2.86 dq $(7.2,7.1)$
3.23 dd (7.5, 5.2)
$4.37 \mathrm{dt}(8.5,5.1)$

CDCl_{3}
$2.85 \mathrm{dq}(7.2,7.1)$
3.23 dd (7.5, 5.2)
4.37 dt (8.4, 5.2)

CDCl_{3}
$2.92 \mathrm{dq}(7.2,7.1)$
$3.30 \mathrm{dd}(7.3,5.2)$
$4.40 \mathrm{dt}(8.7,5.0)$

CDCl_{3}
$2.95 \mathrm{dq}(7.2,7.2)$
3.33 dd (7.2, 5.2)
4.44 m

2
[a] $\left[\mathrm{D}_{4}\right]$ - $\mathrm{MeOH} /\left[\mathrm{D}_{5}\right]$-pyridine ($1: 1, \mathrm{v} / v$); ${ }^{b}$ because of the very poor solubility of synthetic 1 in CDCl_{3}, the resolution of the spectra does not allow the coupling constants to be determined with an accuracy of more than $\pm 0.3 \mathrm{~Hz}$.

[^0]Table S2. Comparison of the ${ }^{1} \mathrm{H}$ NMR signals of the butanolide ring of the gobienine A aglycone with those of other diasteromeric paraconic acid derivatives prepared during our synthetic study as well as with literature data.

Compound	Solvent	H2	H3	H4	Ref
Gobienine A aglycone	a	2.88 dq (7.5, 7.0)	3.24 dd (8.0, 7.0)	4.57 ddd (8.0, 8.0, 5.0)	1

[a] $\quad 3.16 \mathrm{dq}(11.4,7.1) \quad 2.87 \mathrm{dd}(11.4,9.4) \quad 4.94 \mathrm{td}(9.1,3.4)$

$\mathrm{CDCl}_{3} \quad 2.96 \mathrm{dq}(11.6,7.0) \quad 2.68 \mathrm{dd}(11.3,9.4) \quad 4.47 \mathrm{dt}(9.1,4.0)$

$\mathrm{CDCl}_{3} \quad 2.95 \mathrm{dq}(9.3,7.5) \quad 3.09 \mathrm{dd}(9.3,6.4) \quad 4.68 \mathrm{dt}(6.8,6.3)$

CDCl_{3}
$2.95 \mathrm{dq}(9.3,7.4) \quad 3.04 \mathrm{dd}(9.2,6.4)$
4.67 q (6.4)

CDCl_{3}
$3.02 \mathrm{dq}(8.5,7.4)$
3.14 dd ($8.5,6.2$)
4.67 ddd (6.3, 6.3, 6.2) 4

$\mathrm{CDCl}_{3} \quad 3.03(10.0,7.0)$
3.15 (10.0, 8.2)
4.58-4.66 (m)
b

$\mathrm{CDCl}_{3} \quad 3.04 \mathrm{dq}(10.0,7.1)$
3.22 dd (10.0, 8.2)
4.69 m

2
[a] [$\left.\mathrm{D}_{4}\right]-\mathrm{MeOH} /\left[\mathrm{D}_{5}\right]$-pyridine $(1: 1, v / v){ }^{\text {b }}$ this isomer was a by-product in the attempted synthesis of alkene 22b by the Wittig olefination mentioned in the text.

[^1]General. Unless stated otherwise, all reactions were carried out in flame-dried glassware under Argon. All solvents were purified by distillation over the indicated drying agents and were stored and transferred under Argon: THF (Mg-anthracene), $\mathrm{Et}_{2} \mathrm{O}$ (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, hexanes, pentanes $(\mathrm{Na} / \mathrm{K})$, toluene $(\mathrm{Na} / \mathrm{K})$. Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT 8200, MS (CI): Finnigan MAT 95, MS (ESI) ESQ 3000, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300, AV 400, AV 500 or AV 600 spectrometer in the solvents indicated; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.24 \mathrm{ppm}\right.$, $\delta_{\mathrm{C}}=77.00 \mathrm{ppm} ; \quad \mathrm{C}_{6} \mathrm{D}_{6}: \quad \delta_{\mathrm{H}}=7.15 \mathrm{ppm}, \quad \delta_{\mathrm{C}}=128.0 \mathrm{ppm}, \quad\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}: \quad \delta_{\mathrm{H}}=3.30 \mathrm{ppm}$, $\left.\delta_{\mathrm{C}}=49.0 \mathrm{ppm}\right)$ and the chemical shifts converted to the TMS scale. All commercially available compounds (ABCR, Acros, Aldrich, Fluka, Lancaster, Strem) were used as received.

10-(Benzyloxy)decan-1-ol. 1,10-Decanediol ($4.4 \mathrm{~g}, 25 \mathrm{mmol}$) was slowly added to a suspension of $\mathrm{NaH}(0.60 \mathrm{~g}, 25 \mathrm{mmol})$ in THF/DMF $(1: 1,50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred at that temperature for 4 h until the evolution of gas had ceased. Benzyl bromide ($4.6 \mathrm{~g}, 27 \mathrm{mmol}$) was then introduced and the resulting mixture stirred overnight at ambient temperature. The reaction was carefully quenched with $\mathrm{H}_{2} \mathrm{O}$ and the product extracted with hexane/EtOAc (5:1), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 5:1) to afford the title compound as a colorless oil ($3.2 \mathrm{~g}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.20 \mathrm{ppm}(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 138.7, 128.3, 127.6, 127.4, 72.8, 70.5, 63.1, 32.8, 29.7, 29.50, 29.48, 29.4, 29.3, 26.2, 25.7 ppm; IR (film): $\tilde{v}=3372,3030,2926,2853,1454,1362,1204,1100,1075,1028,734,697$ cm^{-1}; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 264$ (18) $[\mathrm{M}]^{+}, 246$ (2), 107 (95), 91 (100), 81 (11), 69 (9), 55 (14), 41 (11); HRMS (ESI'): calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}+\mathrm{Na}^{+}: 287.1981[\mathrm{M}+\mathrm{Na}]^{+}$; found: 287.1984.

Aldehyde 14. A mixture of PCC ($3.4 \mathrm{~g}, 15.7 \mathrm{mmol}$) and silica (3.4 g) was added to a solution of 10-(benzyloxy)decan-1-ol ($3.2 \mathrm{~g}, 12.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the resulting mixture was stirred for 3 h . Filtration of the suspension through a pad of Celite, evaporation of the filtrate, followed by flash chromatographic purification of the residue (hexane/EtOAc, 5:1) provided aldehyde 14 as a colorless oil $(2.4 \mathrm{~g}, 75 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.74(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.44$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.20 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.9,138.7,128.3,127.6,127.4,72.8,70.5,43.9,29.7$, 29.4, 29.3, 29.2, 29.1, 26.1, 22.1 ppm ; IR (film): $\tilde{v}=2927,2854,1724,1454,1362,1205$, 1101, 736, $697 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 262 (1) [M] ${ }^{+}, 107$ (100), 91 (88), 79 (7); HRMS (ESI^{+}): calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{Na}^{+}: 285.1825[\mathrm{M}+\mathrm{Na}]^{+}$; found: 285.1826.

Cyanohydrin 6. TMSCN $(0.60 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added to a solution of octanal $(0.64 \mathrm{~g}, 5.0$ $\mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~g}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting mixture was stirred for 2.5 h before $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$ and aq. $\mathrm{HCl}(1 \mathrm{M}, 7$ mL) were added. After stirring for 30 min , the product was extracted with EtOAc, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 10:1) to give product $\mathbf{6}$ as a colorless oil $(0.41 \mathrm{~g}, 52 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.45(\mathrm{dt}, J=6.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{brs}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.86 \mathrm{ppm}(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=119.9,61.4,35.2,31.6,29.0,28.9,24.5,22.6,14.0 \mathrm{ppm}$; IR (film): $\tilde{v}=$ 3433, 2927, 2857, 1466, 1126, 1072, $724 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 155 (< 1) [M] $]^{+} 110$ (6), 95 (11), 84 (39), 71 (13), 69 (30), 57 (80), 43 (100), 41 (81), 29 (49), 27 (65); HRMS (CI, ibutane): calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}^{+}: 156.1388[\mathrm{M}+\mathrm{H}]^{+}$; found: 156.1390.
(\mathbf{S})-Cyanohydrin 15. A solution of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{M}, 2.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ was
 added to a suspension of ligand $24(74 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The mixture was stirred for 1 h before it was cooled to $-40^{\circ} \mathrm{C}$ and TMSCN $(0.57 \mathrm{~g}, 6.0 \mathrm{mmol})$ was introduced. After stirring for 20 min , a solution of aldehyde $\mathbf{1 4}(0.53 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise and the resulting mixture stirred for 48 h at this temperature. aq. $\mathrm{HCl}(2 \mathrm{M}, 12 \mathrm{~mL})$ and $\mathrm{EtOAc}(12 \mathrm{~mL})$ were then sequentially added, the mixture was allowed to reach ambient temperature and stirring continued for 5 h . After extraction with EtOAc, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 5:1) to give cyanohydrin 15 as a colorless oil $(0.51 \mathrm{~g}, 88 \%, 89 \%$ ee $) .[\alpha]_{D}^{20}=-3(\mathrm{c}=0.17$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{dt}, J=6.6$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.42$ $(\mathrm{m}, 4 \mathrm{H}), 1.40-1.20 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.5,128.4,127.7$, $127.5,119.9,72.9,70.5,61.3,35.2,29.7,29.3$ (2C), 29.2, 28.8, 26.1, 24.5 ppm ; IR (film): \tilde{v} $=3445,2928,2855,1455,1365,1075,739,698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 289 (5) [M] ${ }^{+}, 262$ (6), 135 (2), 107 (76, 91 (100), 79 (10), 65 (10), 55 (12), 41 (14); HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}{ }^{+}: 289.2042\left[\mathrm{M}^{+}\right]$; found: 289.2039.

The enantiomeric excess was determined by HPLC (Chiralpak IC-3 Nr IC3OCD-OD004, $3 \mu \mathrm{~m}, \varnothing 4.6 \mathrm{~mm}$, n-heptane $/ 2$-propanol $=80: 20(\mathrm{v} / \mathrm{v}), 1$ $\mathrm{mL} \cdot \mathrm{min}^{-1}, 298 \mathrm{~K}$, UV detection @ $210 \mathrm{~nm}: \mathrm{t}_{\mathrm{R}}=6.73$ and 9.43 min) after transformation of the cyanohydrin into the corresponding acetate $\left(\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, using a racemic sample for comparison. The acetate analyzed as follows: $[\alpha]_{D}^{20}=-32(\mathrm{c}=0.13$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ ($\mathrm{s}, 2 \mathrm{H}$), $3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.40-1.20 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2,138.7,128.3$, 127.6, 127.4, 116.9, 72.8, 70.4, 61.1, 32.2, 29.7, 29.3 (2C), 29.1, 28.7, 26.1, 24.5, 20.4 ppm ; IR (film): $\tilde{v}=2929,2855,1753,1454,1372,1218,1101,1029,737,698 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$
(\%): 331 (9) $[\mathrm{M}]^{+}, 174$ (1), 135 (1), 107 (100), 91 (82), 43 (28); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}+\mathrm{Na}^{+}: 354.2040[\mathrm{M}+\mathrm{Na}]^{+}$; found: 354.2037.

Ester 7. $\mathrm{Et}_{3} \mathrm{~N}(0.91 \mathrm{~g}, 9.0 \mathrm{mmol})$ and 2-bromopropionyl bromide ($1.8 \mathrm{~g}, 8.2 \mathrm{mmol}$) were
 sequentially added to a solution of cyanohydrin $6(0.98 \mathrm{~g}, 6.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to ambient temperature and stirred for 2.5 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 10:1) to give ester $\mathbf{7}$ as a mixture of diastereomers $(1.8 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.35(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}$, $2 \mathrm{H} \times 2$), $1.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H} \times 2), 1.40-1.20(\mathrm{~m}$, $8 \mathrm{H} \times 2$), $0.87 \mathrm{ppm}(\mathrm{t}, J=6.6,6.7 \mathrm{~Hz}, 3 \mathrm{H} \times 2) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5(\times 2)$, $116.4,116.1,62.5,62.3,38.5,38.2,32.1(\times 2), 31.6(\times 2), 28.9(\times 2), 28.7,28.6,24.4,24.3$, $22.5(\times 2), 21.3,21.2,14.0(\times 2) \mathrm{ppm}$; IR (film): $\tilde{v}=2956,2928,2857,1753,1446,1379$, 1334, 1247, 1211, 1147, 1095, 1074, 1052, 993, $969 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 290(<1)[\mathrm{M}]^{+}$, 262 (1), 248 (< 1), 233 (< 1), 210 (14), 182 (2), 168 (3), 154 (27), 137 (31), 122 (17), 109 (72), 95 (65), 81 (86), 69 (71), 56 (85), 43 (100); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Br}+\mathrm{Na}^{+}$: $312.0570[\mathrm{M}+\mathrm{Na}]^{+}$; found: 312.0570.

Ester 16. Prepared analogously from cyanohydrin $15(0.49 \mathrm{~g}, 1.7 \mathrm{mmol})$ and 2bromopropionyl bromide $(0.43 \mathrm{~g}, 2.0 \mathrm{mmol})$ as a mixture of diastereomers $(0.69 \mathrm{~g}, 97 \%) .[\alpha]_{D}^{20}=-23\left(\mathrm{c}=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.24(\mathrm{~m}, 5 \mathrm{H} \times 2), 5.35(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H} \times 2), 4.38(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H} \times 2$), 1.96-1.89 (m, 2H×2), $1.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.64-1.44(\mathrm{~m}, 4 \mathrm{H} \times 2), 1.40-1.20 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H} \times 2) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 168.7, 168.5, $138.7(\times 2), 128.3(\times 2), 127.6(\times 2), 127.5(\times 2), 116.4,116.1,72.9(\times 2), 70.4$ $(\times 2), 62.5,62.3,38.5,38.2,32.1(\times 2), 29.7(\times 2), 29.3(\times 2), 29.2(\times 2), 29.1(\times 2), 28.7,28.6$, $26.1(\times 2), 24.4,24.3,21.3,21.1 \mathrm{ppm}$; IR (film): $\tilde{v}=2929,2855,1754,1453,1360,1246$, 1211, 1147, 1097, 1075, 737, $698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 423 (2) [M] ${ }^{+} 288$ (< 1), 244 (< 1), 135 (3), 107 (100), 91 (82), 79 (6), 55 (6), 41 (6); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Br}+\mathrm{Na}^{+}$: $446.1301[\mathrm{M}+\mathrm{Na}]^{+}$; found: 446.1306.

Alkenyltriflate 9. Methanesulfonic acid ($3.9 \mu \mathrm{~L}, 0.060 \mathrm{mmol}$) was added to a suspension of
 Zn dust ($0.59 \mathrm{~g}, 9.0 \mathrm{mmol}$) in THF (6 mL) and the mixture stirred at reflux temperature for 15 min . A solution of compound $7(1.8 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added dropwise to the refluxing suspension and stirring continued for 3 h . After reaching ambient temperature, aq. $\mathrm{HCl}(2.0 \mathrm{~m}, 60 \mathrm{~mL}$) was introduced and the mixture stirred at $90^{\circ} \mathrm{C}$ (bath temperature) overnight. For work up, the
mixture was allowed to cool, the product was extracted with EtOAc, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated.
$\mathrm{Et}_{3} \mathrm{~N}(0.91 \mathrm{~g}, 9.0 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(2.5 \mathrm{~g}, 9.0 \mathrm{mmol})$ were sequentially added to a solution of the crude product $\mathbf{8}$ thus formed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture stirred at that temperature for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 20:1) to provide alkenyl triflate 9 as a pale yellow oil ($1.4 \mathrm{~g}, 69 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.05-4.98(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.18(\mathrm{~m}, 10 \mathrm{H}), 0.86$ $\operatorname{ppm}(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8$, 162.7 , $118.4(\mathrm{q}, J=319$ $\mathrm{Hz}), 118.1,78.3,31.6,31.4,28.9,28.8,24.1,22.5,14.0,7.7 \mathrm{ppm}$; IR (film): $\tilde{v}=2933,1782$, 1708, 1436, 1219, 1137, 811, $764 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 344 (4) [M] ${ }^{+}, 315$ (2), 288 (5), 259 (18), 246 (47), 211 (9), 195 (79), 165 (11), 149 (17), 137 (5), 127 (21), 95 (7), 83 (43), 69 (29), 57 (100), 43 (43); HRMS (ESI^{+}): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S}+\mathrm{Na}^{+}$: $367.0798[\mathrm{M}+\mathrm{Na}]^{+}$; found: 367.0798 .

Alkenyltriflate 17. Prepared analogously from substrate $16(1.3 \mathrm{~g}, 3.1 \mathrm{mmol})$ as a pale
 yellow oil ($1.1 \mathrm{~g}, 77 \%$ over both steps). $[\alpha]_{D}^{20}=+10\left(\mathrm{c}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 1 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.20 \mathrm{ppm}(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 169.8, 162.6, 138.7, 128.3, 127.6, 127.4, 118.4 (q, $J=319 \mathrm{~Hz}$), 118.2, 78.3, 72.8, 70.5, 31.4, 29.7, 29.3 (2C), 29.2, 28.9, 26.1, 24.1, 7.7 ppm ; IR (film): $\tilde{v}=2930,2856,1779,1707,1433$, 1242, 1218, 1137, 1105, 930, 810, 764, 736, $698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 478 (3) [M] ${ }^{+}, 460$ (4), 387 (4), 345 (8), 259 (6), 223 (41), 180 (3), 107 (22), 91 (100), 69 (12), 55 (11); HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S}+\mathrm{Na}^{+}: 501.1529[\mathrm{M}+\mathrm{Na}]^{+}$; found: 501.1534.

Methyl Ester 10. $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(20 \mathrm{mg}, 60 \mu \mathrm{~mol})$ and DPEphos ($32 \mathrm{mg}, 60 \mu \mathrm{~mol}$) were
 dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and the mixture stirred for 5 min before a solution of alkenyltriflate $9(0.21 \mathrm{~g}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$, followed by MeOH $(1.2 \mathrm{~mL})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.16 \mathrm{~g}, 1.2 \mathrm{mmol})$ were added. The resulting mixture was stirred under CO atmosphere (balloon) for 18 h before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with EtOAc , the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 10:1) to give ester 10 as a pale yellow oil ($140 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.13-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.13-1.98 (m, 1H), 1.60-1.45 (m, 1H), 1.45-1.18 (m, 10H), $0.85 \mathrm{ppm}(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.9,162.6,147.6,137.4,81.4,52.3,32.8,31.7,29.1,29.0$, 24.7, 22.6, 14.0, 10.8 ppm ; IR (film): $\tilde{v}=2955,2926,2857,1764,1724,1438,1337,1220$, 1098, 1036, 966, 776, $759 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 254 (1) [M] ${ }^{+}, 239$ (< 1), 225 (38), 195
(17), 169 (14), 156 (100), 127 (49), 109 (9), 95 (16), 81 (5), 67 (45), 57 (98), 43 (54), 29 (27); HRMS (ESI ${ }^{+}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{Na}^{+}: 277.1410[\mathrm{M}+\mathrm{Na}]^{+}$; found: 277.1410.

Compound 18. A solution of $\operatorname{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ and DPEphos $(65 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was stirred for 5 min before a solution of alkenyltriflate $\mathbf{1 7}(0.57 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$, followed by 2trimethylsilylethanol $(0.71 \mathrm{~g}, 6.0 \mathrm{mmol})$ and $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.19 \mathrm{~g}, 1.5$ mmol) were added. The mixture was stirred under CO atmosphere (1 atm, balloon) for 14 h . The reaction was then quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the product extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude material was purified by flash chromatography (hexane/EtOAc, 20:1) to give ester 18 as a pale yellow oil $(0.46 \mathrm{~g}, 82 \%) .[\alpha]_{D}^{20}=-20\left(\mathrm{c}=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 2 \mathrm{H})$, $3.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.40-$ $1.20(\mathrm{~m}, 12 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.05 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$, $162.4,148.1,138.7,136.9,128.3,127.6,127.4,81.4,72.8,70.5,64.1,32.7,29.7,29.5,29.4$, 29.3, 29.2, 26.1, 24.7, 17.5, 10.8, -1.6 ppm; IR (film): $\tilde{v}=2927,2855,1765,1717,1454$, 1329, 1250, 1222, 1099, 936, 858, 837, 735, $697 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 428 (1), 368 (12), 340 (4), 295 (3), 267 (8), 223 (58), 91 (100), 73 (46); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}^{2}+\mathrm{Na}^{+}: 497.2694[\mathrm{M}+\mathrm{Na}]^{+}$; found: 497.2696.

Ester 11 and Diastereomer 12. A mixture of compound 10 ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$) and
 $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}(5 \% w / w, 5 \mathrm{mg})$ in EtOAc (2 mL) was stirred in an autoclave under H_{2} atmosphere (15 bar) for 22 h . The catalyst was then filtered off through a pad of Celite, the filtrate was evaporated and the residue purified by flash chromatography (hexane/EtOAc, 5:1) to provide product $11(22 \mathrm{mg}, 87 \%)$ along with a fraction containing the isomeric product $\mathbf{1 2}(2.3 \mathrm{mg}, 9 \%)$. Spectral data of compound $\mathbf{1 1}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.38(\mathrm{dt}, J=8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=7.6$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dq}, J=7.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.18$ $(\mathrm{m}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85 \mathrm{ppm}(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=177.1,170.0,79.0,51.7,50.7,39.1,31.6,30.9,29.2,29.0,25.8,22.6,14.0,10.3 \mathrm{ppm}$; IR (film): $\tilde{v}=2927,2857,1778,1735,1459,1438,1378,1343,1172,1128,980,797 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): $m / z(\%): 256$ (5) [M] ${ }^{+}, 238$ (4), 225 (11), 212 (16), 197 (50), 183 (19), 168 (9), 157 (22), 141 (12), 128 (46), 115 (33), 101 (53), 81 (20), 69 (100), 59 (39), 41 (53), 29 (24); HRMS (ESI^{+}): calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{Na}^{+}$: 279.1567 [M+Na] ${ }^{+}$; found: 279.1568.

Spectral data of Isomer 12: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.68(\mathrm{dt}, J=6.8$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=9.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dq}, J=9.3,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.18(\mathrm{~m}, 9 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86 \mathrm{ppm}(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.3,170.6$, $79.5,52.2,50.0,37.2,34.7,31.7,29.2,29.0,25.3,22.6,14.1,11.9 \mathrm{ppm}$.

Ester 19. A mixture of compound $18(0.16 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 20 \mathrm{mg})$ in EtOH
 $(10 \mathrm{~mL})$ was stirred overnight under H_{2} atmosphere (1 atm). The catalyst was then filtered off through a pad of Celite, the filtrate was evaporated and the residue purified by flash chromatography (hexane/EtOAc, 3:1) to yield compound 19 as a colorless oil (0.10 g , $79 \%) \cdot[\alpha]_{D}^{20}=-27\left(\mathrm{c}=0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.11-5.03(\mathrm{~m}, 1 \mathrm{H})$, 4.42-4.26 (m, 2H), 3.61 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.20(\mathrm{~m}, 16 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.05 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$, $162.4,148.1,136.9,81.4,64.1,63.0,32.8,32.7,29.4,29.3,29.2,29.1,25.7,24.7,17.5,10.8$, -1.6 ppm ; IR (film): $\tilde{v}=3422,2928,2856,1766,1717,1393,1331,1250,1224,1180,1042$, 936, 859, 837, 760, $697 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 341 (11), 323 (23), 211 (26), 185 (8), 169 (8), 139 (6), 81 (7), 73 (100), 55 (24), 41 (16); HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}^{+}$: $407.2224[\mathrm{M}+\mathrm{Na}]^{+}$; found: 407.2224.

Ester 20. A mixture of compound 19 ($93 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}(5 \% w / w, 13 \mathrm{mg})$ in

EtOAc (5 mL) was stirred in an autoclave under H_{2} pressure (11 bar) for 17 h . For work up, the autoclave was vented, the catalyst was filtered off through a pad of Celite, the filtrate was evaporated and the residue purified by flash chromatography (hexane/EtOAc, 2:1) to provide product $\mathbf{2 0}(75 \mathrm{mg}, 81 \%)$ as a colorless oil. A second fraction was also collected, which consisted of the diastereomer $21(13 \mathrm{mg}, 13 \%)$. Analytical and spectral data of 20: $[\alpha]_{D}^{20}=-37\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.37(\mathrm{dt}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dq}, J=7.2$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.20(\mathrm{~m}, 16 \mathrm{H}), 1.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.97(\mathrm{~m}$, $2 \mathrm{H}), 0.03 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.2,169.7,79.1,63.4,63.0,50.7$, $39.2,32.7,30.8,29.4,29.3,29.2,29.1,25.8,25.7,17.7,10.3,-1.6 \mathrm{ppm}$; IR (film): $\tilde{v}=3438$, 2927, 2855, 1777, 1729, 1462, 1402, 1341, 1250, 1173, 1039, 978, 860, 838, 760, $695 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 356 (1), 343 (3), 325 (5), 313 (3), 283 (3), 253 (7), 224 (4), 211 (9), 186 (6), 143 (9), 95 (13), 73 (100), 55 (14), 41 (11); HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}^{+}$: $409.2381[\mathrm{M}+\mathrm{Na}]^{+}$; found: 409.2383.

Analytical and spectral data of isomer 21: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=4.67(\mathrm{q}, J=6.4,1 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dq}, J=9.3,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70-1.24(\mathrm{~m}, 17 \mathrm{H}), 1.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.03$ ppm (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.4,170.2,79.5,63.7,63.0,50.2,37.2$, $34.7,32.8,29.4,29.3,29.2,29.1,25.7,25.3,17.6,11.9,-1.6 \mathrm{ppm}$; IR (film): $\tilde{v}=3487,2928$, 2856, 1777, 1731, 1460, 1383, 1357, 1250, 1175, 1043, 978, 859, 838, 760, $695 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 371 (< 1), 343 (3), 325 (5), 313 (8), 283 (5), 253 (7), 223 (5), 211 (27), 143 (12), 95 (11), 73 (100), 41 (7); HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}^{2}+\mathrm{Na}^{+}: 409.2381$ [M+Na] ${ }^{+}$; found: 409.2383 .

Compound 22. TEMPO ($3.3 \mathrm{mg}, 21 \mu \mathrm{~mol}$) and $\mathrm{PhI}(\mathrm{OAc})_{2}(74 \mathrm{mg}, 0.23 \mathrm{mmol})$ were added
 to a solution of $\mathbf{2 0}(80 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was stirred for 2 h before the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 4:1) to provide the corresponding aldehyde as a pale yellow oil ($67 \mathrm{mg}, 84 \%$), which analyzed as follows: $[\alpha]_{D}^{20}$ $=-36\left(\mathrm{c}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.73(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (ddd, $J=8.6,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=$ $7.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{td}, J=7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.20(\mathrm{~m}, 13 \mathrm{H}), 1.23$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.02 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $202.8,177.1,169.7,79.1,63.4,50.7,43.8,39.2,30.8,29.2,29.1$ (2C), 29.0, 25.8, 21.9, 17.7, $10.3,-1.6 \mathrm{ppm}$; IR (film): $\tilde{v}=2930,2856,2714,1778,1725,1456,1403,1341,1250,1171$, 1123, 1038, 976, 859, 837, 758, $695 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 357 (1), 341 (7), 313 (7), 295 (4), 283 (7), 267 (2), 255 (5), 239 (2), 222 (3), 211 (9), 186 (5), 129 (16), 95 (9), 81 (12), 73 (100), 55 (11), 41 (11); HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}^{2}+\mathrm{Na}^{+}: 407.2224[\mathrm{M}+\mathrm{Na}]^{+}$; found: 407.2220 .

A solution of this aldehyde ($0.13 \mathrm{~g}, 0.34 \mathrm{mmol}$) in THF (2 mL) and $\mathrm{CH}_{2} \mathrm{I}_{2}(61 \mu \mathrm{~L}, 0.76 \mathrm{mmol})$ were sequentially added to a suspension of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(0.12 \mathrm{~g}, 0.42 \mathrm{mmol})$ and Zn dust $(0.18 \mathrm{~g}, 2.8 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. The resulting mixture was vigorously stirred for 5 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$. The product was extracted with a mixture of EtOAc and hexane, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 10:1) to give compound $\mathbf{2 2}$ as a colorless oil $(0.094 \mathrm{~g}, 71 \%) .[\alpha]_{D}^{20}=-30\left(\mathrm{c}=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.78$ (ddt, $J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{dt}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.14$ $(\mathrm{m}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=7.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.20(\mathrm{~m}, 13 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.02 \mathrm{ppm}$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=177.2,169.7,139.1,114.2,79.1,63.4,50.7,39.2$, 33.8, 30.8, 29.3 (2C), 29.2, 29.1, 28.9, 25.8, 17.7, 10.3, -1.6 ppm; IR (film): $\tilde{v}=2926,2855$, 1781, 1731, 1640, 1463, 1402, 1341, 1250, 1173, 1038, 971, 909, 859, 838, 759, $696 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 367 (5), 354 (3), 339 (5), 321 (< 1), 309 (10), 264 (2), 243 (3), 204 (11), 186 (8), 143 (10), 95 (7), 73 (100), 55 (11), 41 (11); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}^{2}+\mathrm{Na}^{+}: 405.2432[\mathrm{M}+\mathrm{Na}]^{+}$; found: 405.2434.

A second fraction was collected which consisted of an epimeric compound, which analyzed as follows: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.79(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.42$ (ddd, $J=9.4,8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{dq}, J=11.4$,

[^2]$(\mathrm{m}, 12 \mathrm{H}), 1.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.04 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.9,170.9,139.1,114.2,79.6,64.0,54.6,39.9,34.9,33.8,29.3$ (2C), 29.2, 29.1, 28.9, 25.2, 17.5, 14.5, -1.5 ppm.

Acid 23. A solution of TBAF (1 m in $\mathrm{THF}, 0.60 \mathrm{~mL}, 0.6 \mathrm{mmol}$) was added to a solution of
 compound $22(76 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred at that temperature for 1 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the product was extracted with EtOAc , the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, $1: 1+0.1 \% \mathrm{HOAc}$) to give acid $\mathbf{2 3}$ as a white solid (52 $\mathrm{mg}, 92 \%)$. Mp: $110-111^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-49\left(\mathrm{c}=0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 9.01 (brs, 1 H), 5.78 (ddt, $J=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{dt}, J=8.7,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=7.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dq}, J=7.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.86-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.20(\mathrm{~m}, 12 \mathrm{H}), 1.28 \mathrm{ppm}(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=177.0,175.0,139.1,114.1,78.8,50.3,39.1,33.7,30.8,29.3$ (2C), 29.2, 29.0, 28.9, 25.8, 10.2 ppm ; IR (film): $\tilde{v}=2926,2855,1766,1713,1694,1640$, 1439, 1381, 1353, 1192, 996, 961, 908, $732 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 264 (10), 246 (18), 209 (12), 191 (10), 177 (7), 163 (13), 150 (100), 109 (31), 95 (48), 81 (62), 67 (56), 55 (81), 41 (98); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na}^{+}: 305.1723[\mathrm{M}+\mathrm{Na}]^{+}$; found: 305.1723.
(\boldsymbol{R})-Hept-6-en-2-ol. A solution of 3-butenylmagnesium bromide (1.0 M in THF, $10 \mathrm{~mL}, 10$
 $\mathrm{mmol})$ was added dropwise to a suspension of (R)-propylene oxide $(0.44 \mathrm{~g}, 7.5$ $\mathrm{mmol})$ and $\mathrm{CuCN}(67 \mathrm{mg}, 0.75 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The stirred mixture was allowed to warm to ambient temperature over 16 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the product extracted with EtOAc , and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the residue by flash chromatography (hexane/EtOAc, $10: 1$) provided the title compound as a colorless oil (0.72 $\mathrm{g}, 84 \%) .[\alpha]_{D}^{20}=-14\left(\mathrm{c}=0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.79(\mathrm{ddt}, J=$ $17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.89(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.30$ $(\mathrm{m}, 5 \mathrm{H}), 1.17 \mathrm{ppm}(\mathrm{d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.7,114.6,68.0$, 38.7, 33.7, 25.0, 23.5 ppm ; IR (film): $\tilde{v}=3341,3080,2968,2932,1641,1459,1373,1121$, 996, $910 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 113$ (<1), 96 (9), 79 (4), 71 (27), 67 (13), 57 (9), 54 (65), 45 (100), 42 (22); HRMS (CI, i-butane): calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}^{+}: 115.1123[\mathrm{M}+\mathrm{H}]^{+}$; found: 115.1123.

Monosaccharide 26. A solution of imidate $25(1.3 \mathrm{~g}, 2.0 \mathrm{mmol})^{5}$ and (R) -hept-6-en-2-ol ($8,0.21 \mathrm{~g}, 1.8 \mathrm{mmol}$) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane $(1: 1,15 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$. A solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.28 \mathrm{~g}, 2.0$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane ($1: 1,15 \mathrm{~mL}$) was added dropwise over 2 h and the resulting mixture stirred at that temperature for 3 h . The reaction was quenched with aq. sat. NaHCO_{3} and the product extracted with EtOAc.

[^3]The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, $10: 1$) to furnish glycoside 26 as a colorless oil (0.88 $\mathrm{g}, 76 \%) .[\alpha]_{D}^{20}=-11\left(\mathrm{c}=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.15(\mathrm{~m}$, 15 H), 5.77 (ddt, $J=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.52$ $(\mathrm{m}, 4 \mathrm{H}), 4.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.60(\mathrm{~m}, 5 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.06 \mathrm{ppm}(\mathrm{d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,138.9,138.2,138.0,128.40,128.38,128.32,128.0,127.8$ (2C), 127.7, 127.6 (2C), $127.5,114.4,99.5,83.1,78.1,75.22,75.20,75.0,74.9,73.6,73.4,69.0,36.4,33.6,24.6,20.9$, 19.8 ppm ; IR (film): $\tilde{v}=3064,3031,2865,1749,1497,1454,1373,1231,1057,909,736$, $698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 497 (2), 475 (< 1), 383 (9), 277 (7), 181 (5), 127 (3), 91 (100), 55 (9); HRMS (ESI $)$: calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{7}+\mathrm{Na}^{+}$: $611.2979[\mathrm{M}+\mathrm{Na}]^{+}$; found: 611.2979.

Monosaccharide 27. NaOMe ($26 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added to a solution of compound 26
 $(0.26 \mathrm{~g}, 0.44 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. After stirring for 40 h , the reaction was quenched with aq. sat. NaHCO_{3} and the product extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 5:1) to give product 27 as a colorless oil $(0.21 \mathrm{~g}, 89 \%)$. $[\alpha]_{D}^{20}=-12\left(\mathrm{c}=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.16(\mathrm{~m}, 15 \mathrm{H}), 5.78(\mathrm{ddt}, J=17.0$, $10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.53(\mathrm{~m}$, $2 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{brs}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.15 \mathrm{ppm}(\mathrm{d}, J$ $=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.8,138.7,138.3,138.2,128.39,128.36$, $128.32,128.0,127.9,127.7,127.64,127.61,127.5,114.5,100.6,84.7,77.6,75.2,75.0,74.9$, 74.7, 74.6, 73.5, 69.1, 36.6, 33.6, 24.7, 19.8 ppm ; IR (film): $\tilde{v}=3453,3064,3030,2908$, 2863, 1639, 1496, 1453, 1357, 1208, 1110, 1058, 1027, 909, 734, $696 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 455 (4), 341 (5), 253 (3), 235 (5), 163 (5), 91 (100), 55 (8), 41 (1); HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{6}+\mathrm{Na}^{+}: 569.2874[\mathrm{M}+\mathrm{Na}]^{+}$; found: 569.2876.

Disaccharide 29. A solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mathrm{mg}, 0.35 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and
 pentane ($1: 1,6 \mathrm{~mL}$) was added dropwise over 2.5 h to a solution of imidate $25(0.21 \mathrm{~g}, 0.33 \mathrm{mmol})^{5}$ and compound $27(0.16 \mathrm{~g}, 0.30$ $\mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane $(1: 1,6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 2.5 h before the reaction was quenched with aq. sat. NaHCO_{3} and the product extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, 5:1), providing disaccharide 28 which contained some minor impurities.

This crude material was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{NaOMe}(0.018 \mathrm{~g}, 0.33 \mathrm{mmol})$ was added. After stirring for 40 h , the reaction was quenched with aq. sat. NaHCO_{3}, the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the residue by flash chromatography (hexane/EtOAc, 5:1) afforded disaccharide 29 as a white solid ($0.25 \mathrm{~g}, 83 \%$ over both steps). Mp: 93-94 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-9$ ($\mathrm{c}=$ $0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.15(\mathrm{~m}, 30 \mathrm{H}), 5.80(\mathrm{ddt}, J=17.0,10.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.91(\mathrm{~m}, 3 \mathrm{H}), 4.90-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.72-4.44(\mathrm{~m}, 9 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 1 \mathrm{H})$, $3.80-3.40(\mathrm{~m}, 13 \mathrm{H}), 2.13-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.16 \mathrm{ppm}(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9$ (2C), 138.3, 138.19, 138.17, 137.8, 137.3, 128.6, 128.5, $128.32,128.31,128.28,128.23,128.18,128.13,128.09,127.9$ (2C), 127.82, 127.80, 127.60, $127.58,127.53,127.48,127.43,114.4,104.2,100.6,84.0,83.9,81.0,78.7,77.1,77.0,76.7$, $76.4,75.6,75.1,75.0,74.84,74.81$ (2C), 73.5, $73.4,69.1,68.7,36.5,33.7,24.5 \mathrm{ppm}$; IR (film): $\tilde{v}=3420,3064,3031,2900,1497,1453,1356,1212,1068,1027,908,749,696 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{61} \mathrm{H}_{70} \mathrm{O}_{11}+\mathrm{Na}^{+}: 1001.4810[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1001.4815.

Compound 3-epi-30. DMAP ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a solution of acid 23 (28 mg ,
 $0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and the resulting solution stirred for 5 min before N, N^{\prime}-diisopropylcarbodiimide (DIC, $14 \mathrm{mg}, 0.11 \mathrm{mmol}$) was introduced. After stirring for 10 min , disaccharide 29 ($58 \mathrm{mg}, 59 \mu \mathrm{~mol}$) was added and the resulting mixture stirred at ambient temperature for 24 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, the product extracted with a mixture of EtOAc and hexane, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 8:1) to give 3-epi-30 ($71 \mathrm{mg}, 97 \%$) as a colorless oil. A minor diastereomer (derived from cyanohydrin $\mathbf{1 5}$ of only 89% ee) was not separable at this stage by flash chromatography. $[\alpha]_{D}^{20}=-15\left(\mathrm{c}=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.00$ $(\mathrm{m}, 30 \mathrm{H}), 5.77(\mathrm{ddt}, J=16.8,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddt}, J=16.8,10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dd, $J=9.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.68(\mathrm{~m}, 10 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 6 \mathrm{H})$, $4.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.42(\mathrm{~m}, 11 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dd}$, $J=11.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dq}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.10(\mathrm{~m}, 17 \mathrm{H}), 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01 \mathrm{ppm}(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.9,168.8,139.1,138.8,138.3,138.2,137.91,137.86,137.8,137.6$, $128.5,128.4,128.3$ (4C), 127.9 (3C), 127.8 (2C), 127.7, 127.6, 127.57 (3C), 127.5, 127.1, $114.5,114.1,99.8,99.3,84.8,82.9,80.3,78.8,78.2,77.9,75.8,75.3,75.0,74.83,74.79,74.6$, $74.5,74.4,73.6,73.5,68.9,68.4,53.5,38.4,36.6,35.3,33.8,33.6,29.5,29.4$ (2C), 29.1, 28.9, 25.7, 24.7, 19.5, 14.7 ppm ; IR (film): $\tilde{v}=3063,3030,2926,2856,1779,1749,1640$, 1497, 1454, 1360, 1064, 1027, 910, 735, $967 \mathrm{~cm}^{-1}$; HRMS (ESI $)$: calcd for $\mathrm{C}_{77} \mathrm{H}_{94} \mathrm{O}_{14}+\mathrm{Na}^{+}$: $1265.6536[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1265.6537.

3-epi-Gobienine A (3-epi-1). Complex $31(2.7 \mathrm{mg}, 2.9 \mu \mathrm{~mol})^{6}$ was added to a solution of 3-
 epi-30 ($36 \mathrm{mg}, 29 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the resulting mixture stirred at $40{ }^{\circ} \mathrm{C}$ for 14 h . After reaching room temperature, the solvent was evaporated and the residue purified by flash chromatography (hexane/EtOAc $=5: 1+0.1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford cycloalkene 3-epi-32 as an E/Z-mixture (32 mg , 91%). $[\alpha]_{D}^{20}=-22\left(\mathrm{c}=0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}(\mathrm{film}): \tilde{v}=2926,2855$, $1779,1752,1497,1454,1360,1249,1067,1028,735,697 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{75} \mathrm{H}_{90} \mathrm{O}_{14}+\mathrm{Na}^{+}$: $1237.6223[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1237.6217. This product mixture was used in the next step without further characterization.

A mixture comprising cycloalkene 3-epi-32 ($7.1 \mathrm{mg}, 5.8 \mu \mathrm{~mol}$) and $\mathrm{Pd} / \mathrm{C}(10 \% w / w, 3.0 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$, EtOAc (1 mL) and $\mathrm{HCO}_{2} \mathrm{H}(0.05 \mathrm{~mL})$ was stirred under H_{2} atmosphere (1 atm , balloon) for 18 h at ambient temperature. The catalyst was then filtered off through a pad of Celite, the filtrate was evaporated and the residue purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 5: 1$) to afford 3-epi-1 as a white solid (3.6 mg , $91 \%) .[\alpha]_{D}^{20}=-28(\mathrm{c}=0.06, \mathrm{MeOH})$; IR (film): $\tilde{v}=3358,2924,2854,1747,1665,1570$, 1457, 1406, 1378, 1257, 1187, 1068, 1031, $896,721 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{14}+\mathrm{Na}^{+}: 699.3562[\mathrm{M}+\mathrm{Na}]^{+}$; found: 699.3559. For the NMR data, see Table S4.

Compound 30. For the success of the reaction, it was important to use freshly distilled
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $<1 \mathrm{ppm}$ of water (Karl Fischer titration).

Acid 23 ($33.0 \mathrm{mg}, 117 \mu \mathrm{~mol}$) was transferred into a Schlenk flask using dry toluene. The solvent was evaporated in vacuo before a solution of DMF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mu \mathrm{M}, 2.8 \mathrm{~mL})$ was added. Oxalyl chloride ($38 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) was introduced and the solution stirred for 3 h before the solvent and the excess reagent were evaporated in vacuo.

In a separate flask, disaccharide 29 ($76 \mathrm{mg}, 77 \mu \mathrm{~mol}$) was dissolved in dry toluene and the solvent removed in vacuo to co-evaporate traces of water. The dried material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and the resulting solution added to the solid acid chloride (rinsing the flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times 0.2 \mathrm{~mL}$). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before triethylamine ($65 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) was added, and stirring was continued for 2 h at this temperature. For work up, sat. aq. NaHCO_{3} was introduced, the mixture extracted with ethyl acetate (5x), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated. The residue was purified by flash chromatography (silica of $15-40 \mu \mathrm{~m}$,

[^4]hexanes/ethyl acetate $90 / 10 \rightarrow 80 / 20$) to give ester 3-epi-30 ($21 \mathrm{mg}, 21 \%$) as a clear oil, several mixed fractions, and a fraction of pure diene 30. The mixed fractions were combined and re-subjected to flash chromatography on silica (silica of 15-40 $\mu \mathrm{m}$, hexanes/acetone 95/5 $\rightarrow 90 / 10$) to afford a second crop of product $\mathbf{3 0}$ as a clear oil ($64 \mathrm{mg}, 66 \%$, combined yield). The product contained a diastereomeric impurity, which originates from cyanohydrin $\mathbf{1 5}$ used as the starting material that had only been 89% optically pure; this by-product was removed after the RCM step (see below). $[\alpha]_{D}^{20}=-34\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.39-7.17(\mathrm{~m}, 28 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{ddt}, J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=9.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=17.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{ddt}, J=10.2,2.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.53(\mathrm{~m}, 6 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=9.4,5.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=8.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=7.5$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{qi}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{dddd}, J=14.3,9.6,9.1,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.59-1.02(\mathrm{~m}, 15 \mathrm{H}), 1.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.80$ $\operatorname{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=176.9,168.4$ 139.2, 139.0, 138.2(4), 138.1(9), 138.1(2), 138.0(5), 137.9, 137.6, 128.6, 128.4(2), 128.3(9), 128.3(2), 128.3(0), 128.2, 128.0, $127.9(1), 127.8(8), 127.8(2), 127.6,127.5(2), 127.4(9), 127.2,126.3,114.3,114.1,99.9,98.6$, 86.0, 81.8, 79.1, 78.4, 78.0, 76.2, 75.8, 75.4, 75.2, 74.8(9), 74.8(7), 74.8, 73.7, 73.6, 73.5, $73.2,68.8,68.1,50.5,39.3,36.5,33.8,33.6,30.6,29.5,29.2,29.0,28.9,28.7,26.1,24.7$, $20.0,10.8 \mathrm{ppm}$; IR (film): $\tilde{v}=2926,2856,1780,1746,1639,1497,1454,1360,1181,1149$, 1069, 1027, 909, 734, $697 \mathrm{~cm}^{-1}$; MS (ESI ${ }^{+}$): m/z: $1265[\mathrm{M}+\mathrm{Na}]^{+}, 644.3[\mathrm{M}+2 \mathrm{Na}]^{2+}$; HRMS (ESI^{+}): calcd for $\mathrm{C}_{77} \mathrm{H}_{94} \mathrm{O}_{14}+\mathrm{Na}^{+}$: $1265.6536[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1265.6541 .

Compound 32. Complex $31(2.8 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was added to a solution of diene $30(37 \mathrm{mg}$,
 $30 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ and the resulting mixture was stirred at reflux temperature for 16 h . After reaching ambient temperature, the solvent was evaporated and the residue purified by flash chromatography (silica of $15-40 \mu \mathrm{~m}$, hexanes/ethyl acetate $90 / 10 \rightarrow 85 / 15$) to yield product 32 as a clear oil (30 mg , $83 \%, E / Z$ mixture). It is of note that the minor diastereomers originating from the imperfect enantiomeric purity of the cyanohydrin 15 ($89 \% e e$) were removed at this point ($2 \mathrm{mg}, 5 \%$). $[\alpha]_{D}^{20}=-26(c=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.08(\mathrm{~m}, 30 \mathrm{H}), 5.44-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.13-$ $4.84(\mathrm{~m}, 5 \mathrm{H}), 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.54(\mathrm{~m}, 8 \mathrm{H}), 4.53-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.27(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.51(\mathrm{~m}, 10 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.27$ $-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.21(\mathrm{~m}, 15 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.09 \mathrm{ppm}(\mathrm{d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.2,177.1,168.1,168.0,138.6(5)$, 138.6(2) br, 138.3(0) br, 138.2(8), 138.2(2), 138.1(8), 138.1(3) br, 138.0(5) br, 137.9(9) br,
137.8(9), 137.6(5), 137.6(2), $131.0 \mathrm{br}, 130.6,130.1,129.9,128.4,128.3(4)$, 128.3(2), 128.2(9), 128.2(5), 128.1, 128.0, 127.9, 127.8(8), 127.7(9), 127.7(5), 127.7(1), 127.7(0), 127.6(2), 127.5(8), 127.5, 127.4(9), 127.4(7) br, 127.4(4) br, 127.0(6) br, 127.0(3) br, 126.4, 126.3, $100.6 \mathrm{br}, 99.8 \mathrm{br}, 98.0,97.7,85.5 \mathrm{br}, 85.2 \mathrm{br}, 81.4,79.9,79.7,78.6,78.5,78.4,78.3$, $75.3,75.2,74.9(8), 74.9(5), 74.9(3), 74.8(6), 74.8(4), 74.4,74.3,74.2,74.0,73.5,73.4,73.3$, $72.7,72.6 \mathrm{br}, 68.9,68.8,67.8 \mathrm{br}, 67.6 \mathrm{br}, 51.3,51.1 \mathrm{br}, 39.1,39.0,35.9,35.5 \mathrm{br}, 32.4,32.0$, 30.6, $29.5 \mathrm{br}, 29.4,29.0(7), 29.0(2) \mathrm{br}, 28.9,28.5,27.9,27.6,26.8,26.3,26.1 \mathrm{br}, 24.2 \mathrm{br}$, $24.0 \mathrm{br}, 20.4 \mathrm{br}, 19.7 \mathrm{br}, 10.5,10.3 \mathrm{ppm}$; IR (film): $\tilde{v}=2924,2855,1782,1744,1497$, $1454,1360,1183,1069,1027,735,697 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{75} \mathrm{H}_{90} \mathrm{O}_{14}+\mathrm{Na}^{+}$: $1237.6223[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1237.6229.

Nominal Gobienine A (1). Palladium on charcoal ($10 \% w / w, 6.7 \mathrm{mg}, 6.3 \mu \mathrm{~mol}$) was added to
 a solution of olefin $32(15.2 \mathrm{mg}, 12.5 \mu \mathrm{~mol})$ in a mixture of methanol (2.1 mL), ethyl acetate (2.1 mL) and formic acid $(105 \mu \mathrm{~L})$. The suspension was stirred for 27 h under an atmosphere of H_{2} (1 atm , balloon) before the catalyst was filtered off through a pad of Celite which was carefully rinsed with methanol. The combined filtrates were evaporated and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol, $90 / 10$) to afford nominal gobienine A $1(7.9 \mathrm{mg}, 93 \%)$ as a white powder. $[\alpha]_{D}^{20}=-37(c=$ $0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film): $\tilde{v}=3443,2923,2854,1770,1739,1378,1338,1224,1194,1079$, 1033, 1005, $992 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{14}+\mathrm{Na}^{+}: 699.3562[\mathrm{M}+\mathrm{Na}]^{+}$; found: 699.3558. For the NMR data, see Table S3.

Table S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of nominal gobienine $\mathrm{A}(1)$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} / \mathrm{CD}_{3} \mathrm{OD}(1: 1, v / v)$;

Numbering scheme as shown in the Insert
The shifts of ${ }^{1} \mathrm{H}$ NMR signals, for which no multiplicity is given, were extracted from 2 D spectra

${ }^{13} \mathrm{C}$	${ }^{13} \mathrm{C}$ NMR (150 MHz) ${ }^{[1]}$	${ }^{1} \mathbf{H}$	${ }^{1} \mathrm{H}$ NMR (600 MHz) ${ }^{[1]}$
1	179.7	-	-
2	40.4	2	3.04 qi (7.0)
3	52.1 broad	3	$3.49 \mathrm{dd}(6.9,5.1)$
4	81.2	4	$4.47 \mathrm{dt}(5.2,7.0)$
5	31.6	5a	1.95 m
		5b	
6	26.9	6 a	1.45
		6b	1.41
7	30.0	7a	1.26
		7b	
8	29.5 (broad), 29.4, 29.1 (broad), 28.9, 28.6(5), 28.6(2) (broad), 28.5(5) (broad), 28.2(9) (broad) not individually assigned	8a/b	1.24-1.18
9		9a/b	
10		10a/b	
11		11a/b	
12		12a/b	
13		13a/b	
14		14a/b	
15		15a/b	
16	25.1	16a	1.38
		16b	1.32
17	37.7 broad	17a	1.57 m
		17b	1.32
18	76 very broad	18	3.90
19	20 broad	19	1.14 d (6.2)
20	11.0	20	1.42 d (7.1)
21	170.0	-	-
1,	101.5 broad	1 '	4.54 d (7.0)
2'	80 very broad	2^{\prime}	3.79
3'	78.2 broad	3 '	3.81 t (9.1)
4'	71.7	4'	3.64 dd (9.5, 8.8)
5,	78.5	5	3.44
6'	62.7	6'a	$4.09 \mathrm{dd}(11.9,2.3)$
		6'b	3.91 dd (12.0, 5.5)
$1 "$	100.9 broad	1 "	5.33
2"	77.1 broad	2"	$5.07 \mathrm{dd}(9.4,8.2)$
3"	77.0 broad	3 "	3.67 t (9.2)
4"	72.2 broad	4"	3.72 t (9.1)
5"	78.7	5"	3.44
6"	62.6	6'a	$4.06 \mathrm{dd}(11.9,2.3)$
		6''b	$3.88 \mathrm{dd}(12.0,5.2)$

$[\mathrm{a}] \delta_{\mathrm{C}}(\mathrm{ppm}) ;[\mathrm{b}] \delta_{\mathrm{H}}(\mathrm{ppm})$, multiplicity, coupling constant $J(\mathrm{~Hz})$.

Table S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of 3-epi-1 in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} / \mathrm{CD}_{3} \mathrm{OD}(1: 1$, v / v).

Numbering scheme as shown in the Insert.
The shifts of ${ }^{1} \mathrm{H}$ NMR signals, for which no multiplicity is given, were extracted from 2D spectra

${ }^{13} \mathrm{C}$	${ }^{13} \mathrm{C}$ NMR (150 MHz) ${ }^{[1]}$	${ }^{1} \mathrm{H}$	${ }^{1} \mathrm{H}$ NMR (600 MHz$)^{[6]}$
1	178.6	-	-
2	40.4	2	$3.16 \mathrm{dq}(11.4,7.1)$
3	54.9	3	2.87 dd (11.4, 9.4)
4	80.0	4	$4.94 \mathrm{dt}(3.4,9.1)$
5	36.2	5a	1.96
		5b	1.64 m
6	26.6	6 a	1.42 m
		6b	
7	29.8	7a	1.26
		7b	
8	$\begin{aligned} & \text { 29.7, 29.5, 28.7(8), 28.7(6), } \\ & \text { 28.7(4), 28.7(3), 28.4, 28.0 } \\ & \text { not individually assigned } \end{aligned}$	8a/b	1.26-1.18
9		9a/b	
10		10a/b	
11		11a/b	
12		12a/b	
13		13a/b	
14		14a/b	
15		15a/b	
16	25.1	16a	1.34
		16b	
17	38.0	17a	1.50
		17b	1.34
18	74.5	18	3.91
19	20.1	19	1.12 d (6.2)
20	15.2	20	1.25 d (7.1)
21	171.2	-	-
$1{ }^{\prime}$	101.3	1 '	4.53 d (7.6)
2'	82.9	2'	3.55
3'	77.5	3'	3.71 t (9.0)
4'	72.3	4'	3.55
5	78.2	5'	3.45 ddd (9.7, 6.2, 2.3)
6'	63.3	6'a	4.12 dd (11.6, 2.3)
		6'b	3.85 dd (11.7, 6.3)
1"'	102.0	$1{ }^{\prime \prime}$	5.17 d (8.1)
2',	77.4	2',	$5.21 \mathrm{dd}(9.1,8.3)$
3',	76.4	3',	3.82 t (9.0)
4',	71.4	4',	3.88 t (9.3)
5,	78.7	5',	3.53
6',	62.1	6''a	4.09 dd (11.9, 2.3)
		6''b	$4.01 \mathrm{dd}(11.9,4.1)$

$[\mathrm{a}] \delta_{\mathrm{C}}(\mathrm{ppm}) ;[\mathrm{b}] \delta_{\mathrm{H}}(\mathrm{ppm})$, multiplicity, coupling constant $J(\mathrm{~Hz})$.

I mullus int.
$\begin{array}{lllllllllllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{pp}\end{array}$

-178.58
-171.17

 स

[^0]: ${ }^{1}$ T. Řezanka, I. A. Guschina, Phytochemistry 2001, 58, 1281-1287
 ${ }^{2}$ M. Amador, X. Ariza, J. Garcia, J. Ortiz, J. Org. Chem. 2004, 69, 8172-8175

[^1]: ${ }^{3}$ M. P. Sibi, P. Liu, J. Ji, S. Hajra and J. Chen, J. Org. Chem. 2002, 67, 1738-1745.
 ${ }^{4}$ T. Martín, C. M. Rodríguez, V. S. Martín, J. Org. Chem. 1996, 61, 6450-6453

[^2]: $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=11.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.20$

[^3]: ${ }^{5}$ A. Fürstner, I. Konetzki, Tetrahedron Lett. 1998, 39, 5721-5724.

[^4]: ${ }^{6}$ A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Chem. Eur. J. 2001, 7, 4811-4820.

